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Abstract

We introduce a lightweight video-captioning pipeline
trained on GCP L4. The system use a CLIP ViT-B/32
as the vision encoder, captures temporal structure with a
multi-head attention module, and conditions a partially
fine-tuned GPT-2 decoder on the resulting sequence. This
design inherits rich image—text semantics from CLIP. On
the MSR-VTT benchmark it delivers 0.540 CIDEr, 0.422
BLEU-4, and 0.937 BERTScore F;—improving the clas-
sical VGG—LSTM baseline by +0.382 CIDEr. Ablations
show that (i) replacing VGG with CLIP yields larger gains,
and (ii) training on three randomly sampled reference cap-
tions per video works much better than one reference cap-
tion per video. Our results suggest that reuse of large-scale
vision—language priors, combined with modest task-specific
adaptation, is a very powerful model architure for video
caption task.

1. Introduction

Video captioning plays a vital role across diverse appli-
cations due to its multifaceted benefits:

* Accessibility: Enables access to audio content for the
deaf/hard-of-hearing and individuals with auditory pro-
cessing disorders (e.g., ADHD, autism), ensuring equi-
table information access while enhancing comprehension
and focus.

¢ Comprehension Enhancement: Facilitates understand-
ing of complex terminology, accents, or subject mat-
ter through synchronized text descriptions, improving
knowledge retention.

¢ Environmental Flexibility: Allows content consump-
tion in noisy (e.g., public transit) or sound-restricted (e.g.,
libraries) environments.

* SEO Optimization: Boosts video discoverability by pro-
viding crawlable, indexable text for search engines, in-
creasing content visibility.

* Content Summarization: Supports automated summary
generation, enabling quick content previews and enhanc-

ing recommendation systems for improved user engage-
ment.

* Globalization: Permits multilingual translation, expand-
ing audience reach and fostering cross-cultural exchange
through international search results.

The input to our neural network-based algorithm is raw
video data, from which we generate descriptive captions.

2. Related Work
2.1. CNN-RNN Encoder-Decoder

The first deep-learning systems treated video captioning
as a sequence-to-sequence translation problem. A 2-D or
3-D convolutional network extracted frame or clip embed-
dings, which an RNN translated into text. Canonical ex-
amples include S2VT by [10], “Describing Videos by Ex-
ploiting Temporal Structure” by [13], and the hierarchical
H-RNN of [14]. These models were the first to be train-
able end-to-end from paired (video, sentence) data and im-
mediately outperformed template-based systems. However,
compressing an entire clip into a single hidden state made
them vulnerable to vanishing gradients and forced the de-
coder to paraphrase generic events (e.g. “someone is play-
ing”), especially on long or complex sequences.

2.2. Attention and Reinforcement-Learning Refine-
ments

To mitigate information bottlenecks, follow-up work in-
troduced temporal attention [[13|] attend to salient frames
on-the-fly; RECNET [16] and MARN [8]] refine this idea
with memory blocks that track cross-modal interactions. A
parallel thread fine-tunes generators via policy-gradient ob-
jectives that directly optimise CIDEr or SPICE. Although
these techniques raised automatic scores and improved
word choice, the attention weights sometimes drifted to ir-
relevant frames, and reinforcement-learning proved unsta-
ble, occasionally rewarding captions that game the metric
without being faithful to the video.



2.3. Hierarchical / Paragraph-Level Decoders

One-sentence captions cannot work for minute-long
clips. To address this, [12] and [[11]] propose two-level archi-
tectures: a high-level manager selects clip segments, while
a low-level LSTM writes one sentence per segment. The
hierarchy yields coherent paragraphs that preserve tempo-
ral order, yet demands dense temporal grounding labels and
often fails when shots are unusually brief or prolonged.

2.4. Transformer Models and Large-Scale Vision-
Language Pre-training

A major leap in quality occurred when researchers re-
cast video captioning as a masked-token pre-training prob-
lem, analogous to BERT. VIDEOBERT [9], HERO [4],
and UNIVL [5] train on millions of YouTube clips and
automatic transcripts, learning powerful joint embeddings.
More recently, FLAMINGO [1]] and VIDEOCHATGPT [7]
demonstrate impressive few-shot transfer and open-ended
dialogue capabilities. The trade-off is a expensive compute
and data budget for pre-training.

2.5. Multimodal Fusion: Audio, Vision, and Text

Visual frames alone ignore narrations and sound events
critical for ground-truth alignment. VIOLET [3] and
MERLOT-RESERVE [15]] fuse audio, video, and lan-
guage streams by predicting masked tokens across chan-
nels, thereby anchoring speech segments to visual actions.
The resulting captions capture “who is speaking” and “what
is playing” but suffer from noisy alignment in clips without
transcripts and require scarce tri-modal pre-training data.

2.6. CLIP/ViT-Based Lightweight Generation

A pragmatic alternative is to freeze a strong vision en-
coder—such as CLIP’s ViT—and train only a lightweight
text decoder. CLIP2Video [6] and COCA [2]] exemplify this
recipe, cutting wall-clock training from GPU-days to GPU-
hours while retaining over 90 % of the performance of a
fully fine-tuned vision-language model. The drawback is
the sensitivity to frame sampling: missing a pivotal frame
can starve the decoder of crucial context.

2.7. Ideas that Moved the Field Forward

Three insights recur across the literature:

* Sequence-to-sequence framing. Treating video-to-text
as machine translation (S2VT) enabled the first end-to-
end training regime.

* Masked-token video pre-training. VIDEOBERT re-
purposed free ASR transcripts to scale datasets by two
orders of magnitude.

¢ Encoder freezing. CLIP2VIDEO demonstrated that a
high-quality frozen encoder plus a small decoder often

beats heavier models, making rapid prototyping viable
on modest hardware.

3. Methods

3.1. Problem Setup and Notation

Our goal is to train a system that takes a short video clip
and emits an English sentence that faithfully describes the
salient objects, actions, and interactions visible within that
clip. Formally, a video V is represented as an ordered list of
T RGB frames,

V:{f17f27 "'7fT}a fteRHXWX3a (1)

where H and W denote height and width in pixels. Follow-
ing common practice in video captioning, we sub-sample at
a constant rate and keep 80 frames per video so that video
of different duration fit into a fixed-size batch.

Caption representation. The target description is a se-
quence of N tokens C' = {wj,ws,...,wy} drawn from
a pre-defined vocabulary Vo of size [Viok| = 50257. We
prepend a special <BOS> symbol and append an <EOS>
symbol so that the decoder learns both sentence onset and
termination.

Loss function. It is use the token-level cross-entropy as
the loss for the model.

N
Lxe(0) = =) logpa(wn | wen, V), )

n=1

At inference time we apply beam search of width 5.

3.2. Baseline: VGG16 + Mean-pool + LSTM

Our starting point mirrors the seminal S2VT pipeline but
strips away the temporal convolution for clarity. Each frame
f; passes through a pre-trained VGG-16 network. We dis-
card the class-score layer and keep the 4096-D activation
from the £c7 layer,

e, = VGG16:(f;) € R0, 3)

Temporal aggregation. To collapse the 80 time steps into
a single clip-level representation we compute the arithmetic

mean,
1T
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While embarrassingly simple, Equation destroys or-
dering information and under-represents brief but crucial
events (e.g. a goal scored in a sports video). Nevertheless, it
establishes a reproducible yard-stick against which the ben-
efit of temporal attention can be measured.



LSTM decoder. Two learned affine projections map e
into (i) the initial hidden state hy € R? and (ii) a per-
sistent context vector ¢ € R% that is concatenated to every
input word embedding. A single-layer LSTM with hidden
size dp, =512 then outputs a logit vector z,, € RIVekl at each
time step, and a softmax converts logits to probabilities. Be-
cause the entire video collapses to one global descriptor, the
model often produces bland, template-like sentences (“A
man is talking in a room”) regardless of the fine-grained
temporal dynamics. Section [5.3]quantifies this limitation.

3.3. Proposed Architecture: CLIP + Temporal At-
tention + GPT-2

The proposed system retains the “encode frames, de-
code text” blueprint but modernises every component: a
language-aligned ViT replaces the CNN; a multi-head at-
tention encoder learns temporal structure; and a partially
fine-tuned GPT-2 replaces the LSTM.

3.3.1 Visual Encoder: CLIP ViT-B/32

For each frame f; we extract a 512-D embedding

vi = e (fr) € R%12) )

where YL p denotes the frozen image tower from ViT-B/32.
Because CLIP is contrastively pre-trained on 400 M (im-
age, text) pairs, its representations are already aligned with
caption-space, letting us reap the benefits of large-scale
training without paying its computational cost.

3.4. Temporal Context Module: Attention Encoder

We employ a multihead selfattention encoder to trans-
form the sequence of 80 frame embeddings into a
single temporal-context feature. Formally, let X =

[x1;...;xg0] € R84 denote the per-frame CLIP embed-
dings. For each attention head h € {1, ..., H} we compute
QM = g™, K® — XW%)» v — XWE/h),

where q") € R'*% is a learned query vector of length
N = land WE?),WE?) € R4*4n are head-specific pro-
jections. Scaled dot-product attention yields

2 = softmax(&\}%}m)V(h) € Rxdn,
Concatenating the head outputs and applying a linear map
produces the final context vector z = Concaty, (z(") )W €
R'*4, Compared with naive mean pooling, multihead at-
tention preserves fine-grained temporal cues, leading to
richer downstream captions.

!Using a global query condenses the clip into a single context token
analogous to the [CLS] mechanism in BERT.

3.5. Text Decoder: GPT-2

The temporal context vector z is prepended to the to-
ken embeddings and fed into GPT-2. During training we
fine-tune only the first two Transformer layers and keep the
remaining ten layers frozen to retain the pre-training pri-
ors. Owing to its self-attention architecture and large-scale
language pre-training, GPT-2 surpasses LSTM decoders in
both length and coherence of generated text while requiring
substantially fewer task-specific parameters.

3.6. Implementation and Disclosure

* Frame extraction — Use OpenCV to extract frames
from video.

e Visual features - openai/CLIP package,
ViT-B/32 weights. No modification other than
turning off gradient computation.

e Text processing — gpt2 tokenizer and model from
HuggingFace Transformers.

* Deep-learning stack — PyTorch; all linear layers, and
multi-head attention layers are stock torch.nn com-
ponents.

* Dataset — MSR-VTT downloaded via Kaggle API;

We explicitly acknowledge that the CLIP and GPT-2
weights, along with their tokenisers, are third-party assets;
all gluing code (data loaders, model architecture, training
and evaluation scripts) is our own and will be open-sourced
upon publication.

4. Dataset and Features
4.1. MSR-VTT Corpus

We conduct all experiments on the MSR-VTT bench-
mark for open-domain video captioning. The corpus com-
prises 10000 user-generated clips scraped from YouTube
between 2010 and 2016. Each clip lasts 10-30 s and is
paired with rwenty free-form sentences authored by crowd
workers, giving a rich variety of linguistic expressions.
Videos cover 20 coarse categories (e.g. sports, music, news)
and a long-tailed distribution of fine-grained actions. To
ensure easy reproducibility we rely on the Kaggle mirror
rather than the original download server, whose links occa-
sionally expire.

4.2. Video Pre-processing
we apply following preprocessing:

1. Frame extraction. Using OpenCV, we first decode ev-
ery clip to a constant 30 fps stream. From this stream
we pick 80 evenly-spaced frames so that extremely short
and extremely long clips contribute an equal number of
training steps, and temporal coverage is still guaranteed.
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Figure 1: Architectural comparison of the baseline and the proposed video-captioning pipelines.

Partition #Videos #Captions
Train 6513 130260
Validation 497 9940

Table 1: MSR—VTT data split used in this work. Each video
is paired with twenty reference sentences.

2. Spatial resizing. Each RGB frame is resized to 224 x
224 pixels with OpenCV’s bilinear filter. The chosen
resolution exactly matches the input requirements of
both backbone encoders (VGG-16 and CLIP-VIT-B/32);
no cropping or aspect-ratio distortion is applied because
preliminary experiments showed that centre-cropping
occasionally removes peripheral actors.

3. Normalization. Pixel intensities are mapped to [0, 1]
and then z-normalised with the channel-wise means and
standard deviations used during the backbone’s origi-
nal pre-training. This step is critical—particularly for
CLIP—because a mismatch of even £0.05 in mean
pixel value caused a ~ 8 CIDEr drop in early ablations.

4.3. Feature Extraction

After preprocessing, each of the 80 frames per clip trav-
els down one of two frozen vision towers, depending on the
experiment:

VGG16 = 4096-D £c7. The classical ImageNet network
provides a high-dimensional but category-centric repre-
sentation. We retain the dense 4 096-D activations from
layer £c7 because they are widely used by earlier cap-
tioning work, enabling apples-to-apples baseline com-
parison.

CLIP ViT-B/32 = 512-D patch embeddings. The mod-
ern alternative feeds the resized frame to the vision
transformer of CLIP. We use the 512-D projection that
is already contrastively aligned with text space; keeping
the weights fixed lets us inherit semantic grounding no
extra cost.

The resulting tensor for a single clip is therefore either
80 x 4096 or 80 x 512. Subsequent modules—mean pool-
ing in the baseline, multi-head self-attention in the proposed
model—consume this tensor without further hand-crafted
manipulation. All downstream gradients stop at the vision
tower’s output node, which saves GPU memory and pre-
vents catastrophic forgetting of the large-scale pre-training
knowledge.

5. Experiments/Results/Discussion

This section explains how hyper—parameters were cho-
sen, defines the metrics used to judge quality, and reports an
extensive quantitative and qualitative evaluation of the base-
line and proposed systems introduced in Section method.

5.1. Evaluation Metrics

CIDEr. Our primary metric is CIDEr, which compares
n—gram TF-IDF vectors of a candidate sentence and of the
K = 20 human references:

= Ry))

CIDEr(C, R) = Z || Hg Ak (6)

where g(-) is the TF-IDF embedding. CIDEr is widely re-
garded as the automatic measure that correlates best with
human judgements on MSR-VTT.

BLEU-4. We also report the geometric mean precision of
1- to 4—grams with the standard brevity penalty. BLEU is
sensitive to fluency but notoriously underrates synonyms.

ROUGE-L. ROUGE-L computes the F-score of the
Longest Common Subsequence (LCS) between candi-
date C' and reference R, thereby rewarding correct content
and correct ordering.

BERTScore. To capture deeper semantics we include
BERTScore F;, which aligns tokens in contextual em-



bedding space and is tolerant to paraphrase and synonym
choice.

5.2. Training Details

Optimisers and learning rates. For the CNN—LSTM
baseline we use AdamW with learning rate 1 x 10~3 and
weight decay 10~%. The GPT2 models require far smaller
steps because of the pre-trained weights; we use 3 x 1075
as the learning rate when the top two GPT-2 layers are fine-
tuned, and reverted to 1x10~3 when all language layers are
frozen.

Batch size and schedule. All systems train for 15 epochs
with batch size 64. We trained the model on GCP L4 GPU.

5.3. Quantitative Results

Table [2| contrasts seven model variants that differ along
three axes: vision backbone (VGG vs. CLIP), temporal ag-
gregation (mean pooling vs. multi-head attention), and de-
coder fine-tuning strategy.

Attention length matters. Keeping four temporal tokens
yields the same CIDEr as keeping eight while halving GPU
memory. Reducing to a single token mimics mean pooling
and costs —9.3 BLEU and —10.1 CIDEr, underscoring the
benefit of fine-grained temporal context.

CLIP vs. VGG. Replacing VGG features with CLIP un-
der an identical mean-pooled pipeline boosts CIDEr by
+0.052 (24 % relative). We attribute the gain to CLIP’s rich
semantics: the visual encoder already encodes object—word
alignments, allowing the language decoder to spend capac-
ity on syntax rather than object discovery.

Frozen vs. fine-tuned GPT-2. Fine-tuned GPT-2 has
much better performance on then using complete frozen
GPT-2.

5.4. Effect of Caption Sampling

The official MSR—VTT JSON contains twenty refer-
ences per clip, but earlier work often trains on only the
first. Table (3| shows that sampling multiple references dur-
ing training materially improves performance.

The three-captions delivers a +58% relative gain in
CIDEr over the traditional “first-caption” baseline, high-
lighting the importance of linguistic diversity for robust
generation.

5.5. Qualitative Analysis

To understand why the numerical gains of Table [2]
materialise, we manually inspected a few validation
clips and the captions produced by both the base-
line (VGG—MeanPool—-LSTM) and our best model
(CLIP + MH-Attn (4) + GPT-2).

1. Finer—grained action verbs. The baseline frequently
defaults to generic constructions such as “a person plays
with a ball” or “someone is talking”. By contrast, the pro-
posed model chooses more discriminative verbs, e.g. “the
striker kicks a low shot into the corner”, correctly reflect-
ing the temporal cues preserved by multi-head attention.

2. Entity grounding and attribute richness. CLIP’s im-
age—text pre-training injects strong object semantics:

GT: “A golden retriever splashes into a lake.”
Baseline: “A dog jumps into the water.”

Groudtruth: “A golden retriever puppy splashes into
a calm lake.”

5.6. Discussion and Take-aways

Two main lessons emerge.

1. Vision-language pre-training outweighs architec-
tural tweaks. Swapping VGG for a frozen CLIP back-
bone, with no change to optimiser or decoder, lifted
CIDEr more than the jump from mean pooling to a
multi-head Attention.

2. More captions trump more parameters. Increasing
training captions from one to three per video beat every
architectural ablation by a wide margin, yet cost zero
additional inference FLOPs.

The next steps could be to pretrain the temporal encoder
on massive unlabeled video: the success of Flamingo-style
models suggests ample head-room. Nevertheless, the sim-
ple CLIP + MH-Attn + GPT-2 system already got very good
CIDEr score on MSR-VTT.

6. Conclusion and Future Work

We presented an efficient video—captioning pipeline that
freezes a CLIP ViT-B/32 encoder, compresses temporal
structure with multi-head attention, and fine-tunes only the
first two layers of GPT-2. The model outperforms the base-
line CNN-LSTM. The best CIDEr score from out model
is 0.540. Our ablations underline two key take-aways: (i)
CLIP works better than VGG when encoding image fea-
tures for caption generation task. and (ii) sampling multiple



Model Variant

CLIP + MH-Attn (Ien=8) + GPT-2 (ft 2)
CLIP + MH-Attn (Ien=4) + GPT-2 (ft 2)
CLIP + MH-Attn (Ien=1) + GPT-2 (ft 2)
CLIP + MH-Attn (Ien=4) + GPT-2 (frozen)
CLIP + MeanPool + GPT-2 (ft 2)

VGG16 + MeanPool + GPT-2 (ft 2)
VGG16 + MeanPool + LSTM (baseline)

CIDErt BLEU-41 ROUGE-L1T BERTScore (F;)1
0.341 0.286 0.534 0.9240
0.341 0.286 0.534 0.9204
0.248 0.226 0.480 09112
0.248 0.226 0.480 0.9244
0.265 0.232 0.485 0.9153
0.213 0.193 0.462 0.9153
0.158 0.230 0.453 0.9153

Table 2: Main ablation study on MSR—VTT validation set. f¢ 2 = fine-tune first two layers of GPT-2; frozen = language model

entirely frozen. Best values in bold; baseline shaded.

Table 3: Impact of using multiple human references during
training. All rows use the same architecture: CLIP + MH-
Attn (Ien = 4) + GPT-2 (fine-tune 2).

captions per clip yields larger gains than increasing param-
eter count.

To further elevate performance, we plan to (i) replace
the current four-token temporal block with a more expres-
sive encoder—e.g. a hierarchical, shot-aware Transformer
or a multi-scale temporal convolution—and (ii) fine-tune
the GPT-2 decoder via reinforcement-learning, thus align-
ing generation more closely with human preferences.
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